

SSCE24V32N1

Ultra-low Capacitance Bidirectional Micro Packaged TVS Diodes for ESD Protection

Description

The SSCE24V32N1 is a bi-directional TVS diode, utilizing leading monolithic silicon technology to provide fast response time and low ESD clamping voltage, making this device an ideal solution for protecting voltage sensitive high-speed data lines. The SSCE24V32N1 has an ultra-low capacitance with a typical value at 0.3pF, and complies with the IEC 61000-4-2 (ESD) with ±15kV air and ±10kV contact discharge. It is assembled into an ultra-small 1.0x0.6x0.5mm lead-free DFN package.

The small size, ultra-low capacitance and high ESD surge protection make SSCE24V32N1 an ideal choice to protect cell phone and high-power USB.

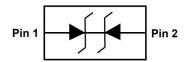
Feature

- ♦ 70W peak pulse power ($t_P = 8/20\mu s$)
- ♦ DFN1006-2L Package
- ♦ Working voltage: 24V
- ♦ Low clamping voltage
- ♦ Low capacitance
- ♦ Low leakage current
- Complies with following standards:
 - IEC 61000-4-2 (ESD) immunity test

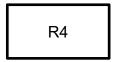
Air discharge: ±15kV

Contact discharge: ±10kV

- IEC61000-4-5 (Lightning) 1.5A (8/20µs)
- ♦ RoHS compliant


Mechanical data

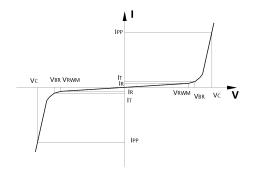
- ♦ Lead finish:100% matte Sn (Tin)
- Case Material: "Green" Molding Compound
- ♦ Qualified max reflow temperature:260 °C
- ♦ Device meets MSL 3 requirements
- ♦ Pure tin plating: 7 ~ 17 um
- ♦ Pin flatness: ≤3mil


PIN configuration

DFN1006-2L (Bottom View)

Circuit Diagram

<u>Marking</u>


Applications

- ♦ DVI & HDMI Port Protection
- ♦ USB 2.0 and USB 3.0
- ♦ SATA and eSATA
- ♦ Serial and Parallel Ports
- ♦ Projection TV
- Notebooks, Desktops, Servers

• Electronic Parameter

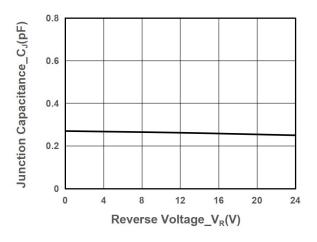
Symbol	Parameter	
V_{RWM}	Peak Reverse Working Voltage	
I _R	Reverse Leakage Current @ V _{RWM}	
V_{BR}	Breakdown Voltage @ I⊤	
I _T	Test Current	
I _{PP}	Maximum Reverse Peak Pulse Current	
Vc	Clamping Voltage @ I _{PP}	
P _{PP}	Peak Pulse Power	

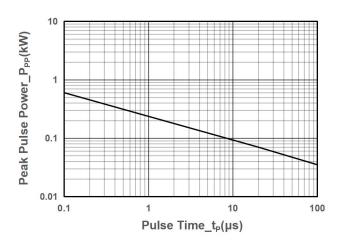
Absolute maximum rating @T_A=25℃

Parameter		Symbol	Value	Unit
Peak Pulse Power (8/20µs)		P _{PP}	70	W
Peak Pulse Current (8/20µs)		I _{PP}	1.5	А
ESD Rating per IEC61000-4-2:	Contact	\/	±10	kV
	Air	V _{ESD}	±15	
Storage Temperature		T _{STG}	-55/+150	$^{\circ}$
Operating Temperature	TJ	-55/+125	$^{\circ}$	

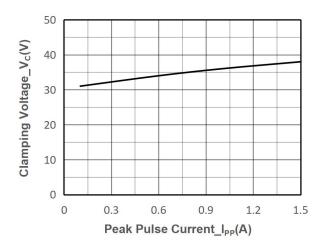
• Electrical Characteristics @T_A=25℃

Parameter	Symbol	Conditions	Min.	Тур.	Max.	Unit
Peak Reverse Working Voltage	V_{RWM}				24	V
Breakdown Voltage	V_{BR}	I _T = 1mA	24.5			V
Reverse Leakage Current	I _R	V _{RWM} = 24V			0.2	μΑ
Clamping Voltage	Vc	$I_{PP} = 1A, t_P = 8/20 \mu s$			40	V
Clamping Voltage	Vc	$I_{PP} = 1.5A, t_P = 8/20 \mu s$			45	V
	V _{CL-ESD}	IEC 61000-4-2+	60			
ESD Clamping Voltage(Note1)		8kV(I _{TLP} =16A),contact				V
ESD Clamping Voltage(Note1)		mode,T=25℃, pin1 to		60		V
		pin2,pin2 to pin1				
Dynamic resistance	R_{DYN}			1.5	·	Ω
Junction Capacitance	Сл	V _R = 0V, f = 1MHz		0.3	0.5	pF

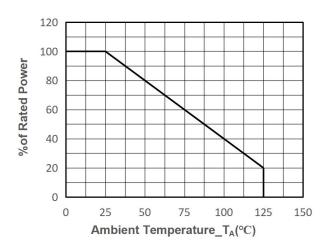

Note 1: ESD Clamping Voltage was measured by Transmission Line Pulsing (TLP) System.

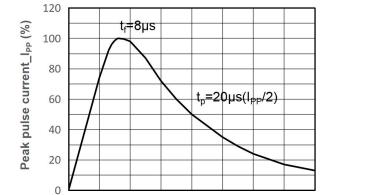

TLP conditions: Z_0 =50 Ω , t_p = 100ns, t_r = 1ns.

2/5



• Typical Performance Characteristics




Junction Capacitance vs. Reverse Voltage

Peak Pulse Power vs. Pulse Time

Clamping Voltage vs. Peak Pulse Current

20

Time_t(us)

30

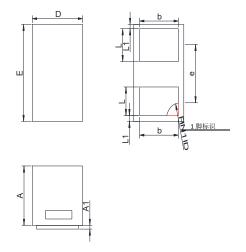
Power derating vs. Ambient temperature

8/20µs Pulse Waveform

10

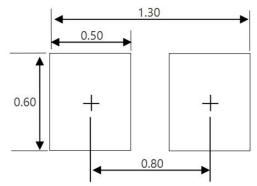
0

• Package Information


Ordering Information

Device	Package	Qty per Reel	Reel Size
SSCE24V32N1	DFN1006-2L	10000	7 Inch

Mechanical Data


Case: DFN1006-2L

Case Material: Molded Plastic. UL Flammability

DIM	Millimeters			
DIIVI	Min	Max		
Α	0.45	0.55		
A 1	0.00	0.05		
D	0.55	0.65		
E	0.95	1.05		
b	0.45	0.60		
е	0.65TYP			
L	0.2	0.3		
L1	0.05REF			

Recommended Pad outline

Unit:mm

DISCLAIMER

SSCSEMI RESERVES THE RIGHT TO MAKE CHANGES WITHOUT FURTHER NOTICE TO ANY PRODUCTS HEREIN TO IMPROVE RELIABILITY, FUNCTION OR DESIGN. SSCSEMI DOES NOT ASSUME ANY LIABILITY ARISING OUT OF THE APPLICATION OR USE OF ANY PRODUCT OR CIRCUIT DESCRIBED HEREIN; NEITHER DOES IT CONVEY ANY LICIENCE UNDER ITS PATENT RIGHTS, NOR THE RIGHTS OF OTHERS.

THE GRAPHS PROVIDED IN THIS DOCUMENT ARE STATISTICAL SUMMARIES BASED ON A LIMITED NUMBER OF SAMPLES AND ARE PROVIDED FOR INFORMATIONAL PURPOSE ONLY. THE PERFORMANCE CHARACTERISTICS LISTED IN THEM ARE NOT TESTED OR GUARANTEED. IN SOME GRAPHS, THE DATA PRESENTED MAY BE OUTSIDE THE SPECIFIED OPERATING RANGE (E.G. OUTSIDE SPECIFIED POWER SUPPLY RANGE) AND THEREFORE OUTSIDE THE WARRANTED RANGE.

OUR PRODUCT SPECIFICATIONS ARE ONLY VALID IF OBTAINED THROUGH THE COMPANY'S OFFICIAL WEBSITE, CRM SYSTEM, OR OUR SALES PERSONNEL CHANNELS. IF CHANGES OR SPECIAL VERSIONS ARE INVOLVED, THEY MUST BE STAMPED WITH A QUALITY SEAL AND MARKED WITH A SPECIAL VERSION NUMBER TO BE VALID.